

2. PM AC SERVOMOTOR STRUCTURE AND DESIGN CRITERIA

- All the motors are designed for 1.5kW and 2000rpm rated speeds.
- · Five of the are conventional balanced motors
- · Some of the others unbalanced and unconventional motors

Summary of the motors analyzed

	Balanced		Odd Slot-pole comb.		
Number	Number	q	Number	q	
of Poles	of Slots	(Slots/Pole/	of Slots	(Slots/Pole/	
		Phase)		Phase)	
6-Pole	18 Slots	1	21 Slots	1.167	
8-Pole	24 Slots	1	27 Slots	1.125	
10-Pole	30 Slots	1	33 Slots	1.1	
12-Pole	36 Slots	1	39 Slots	1.083	
14-Pole	42 Slots	1	45 Slots	1.071	
		www.mdsmotor.com			

 Outline

 1. PM SERVOMOTORS

 2. PM AC SERVOMOTOR STRUCTURE AND DESIGN CRITERIA

 3. NO-LOAD FEA

 4. COGGING TORQUE COMPONENT OF SERVOMOTORS

 5. CONCLUSION

MDS 3. NO-LOAD FEA

- In this no-load analysis the results are obtained for control range, cogging torque and back EMF.
- The maximum flux densities in the teeth in each motor are roughly the same

24 slots with 8 poles motor mesh structure and flux density distribution

www.mdsmotor.com

27.09.2011

9

- · Cogging torque is one of the most important sources of torque pulsations in PM servomotors.
- · It can be minimized using various teqhniques such as magnet pole-arc ratio, stator or magnet skew, magnet-pole shifting, dummy slots, stepped rotor.
- This unwanted component is usually 5 to 10% of the rated torque for most standard industrial applications and less than 1% for applications where low speed control is critical and high precision is required.

www.mdsmotor.com

15

18

Dutline	
	1. PM SERVOMOTORS
	2. PM AC SERVOMOTOR STRUCTURE AND DESIGN CRITERIA
	3. NO-LOAD FEA
_	
	4. FEA ANALYSIS
	5. CONCLUSION

- \checkmark This study shows a comparative no-load analysis of 10 different surface mounted PM servomotors.
- ✓ The motors are investigated for cogging torque components for both balanced and unbalanced structures and it was found that motors with odd-slot-pole combinations provide almost no-cogging component.
- ✓ These motors are well suited for low speed control and applications which require precise position control.

~	-		-	
Z			. Z	

www.mdsmotor.com

www.mdsmotor.com